Elasto-Plastic Surrogate Models via Neuronal Networks

Moisés Zarzoso

Carlos González

Copyright ® 2007 - 2022 IMDEA Materials Institute. All rights reserved

Outline

Surrogate Modelling for Finite Elements Simulations Finite Element Model Dataset Generation Recurrent Neural Networks Neural Network Results **Conclusions**

Surrogate Modelling for FE Simualtions

Data-Drivem Modelling

Micro-Scale Simulations

Machine Learning Model

Calling from FE Code

FE Model. Representative Volume Element

 $V_f = 40\%$

2

Intermediate Modulus Carbon Fibres

FE Model. Boundary Conditions

2

Periodic Boundary Conditions

Displacement needs to be imposed in two nodes (extra node for pinning)

Dataset Generation. Generation of strain history paths

Path connecting points in a 3D strain space:

- A big set of random points is generated using Latin hypercube for ensuring a good spanning of the full strain space.
- A subset of N points is chosen from the set of points.
- The path is generated as an m-Spline connecting the subset.
- Between each of the N points, the number of points for the interpolating curve, N_{int}, is chosen in order to control the total length of the path.

Abaqus Software is used (Implicit Solver):

- Strain history is simulated by imposing displacement of master nodes.
- All the paths span a fixed time in simulation : $t \in [0, 1]$
- Once finished the simulation, the output file is post-processed in order to get the stress history.
- The full strain-stress dataset is stored.
- Time of each (simulation + post-process) : $\sim 60 100 \text{sec}$ (3 cores, 2.5 GHz)

Dataset Generation. Generation of strain history paths

Dataset Generation. RVE's Mechanical Behaviour

Dataset Generation. Accumulated Plastic Strain

$$t = 0$$

$$t = 0.25$$

t = 0.75

t = 1

$$t = 0.5$$

Dataset Generation. Effect of Fibre's Distribution

Recurrent Neural Networks

Start Point :

- Dataset
- Chosen Neural Network Architectured compiled

Step 1: Sample pathsStep 2: NormalizationStep 3: Neural Network Training/EvaluationStep 4: DenormalizationStep 5: Merging of Split Paths

Neural Network. Architecture

Recurrent Neural Network Arquitecture

• Fully Connected Layer : same size than output vector \sim 12k parameters

Mean Squared Error

$$m.s.e = \frac{1}{N} \sum_{i=1,N} \left(\mathbf{y}_{t,i} - \bar{\mathbf{y}}_{t,i} \right)$$

Mean Absolute Error

$$m.a.e. = \frac{1}{N} \sum_{i=1,N} |\mathbf{y}_{t,i} - \bar{\mathbf{y}}_{t,i}|)$$

Fully Connected Neural Network Arquitecture

5 Fully Connected Layers :
500 neurons each layer

\sim 2M parameters

- Loss : m.s.e
- **Optimizer :** Adam algorithm
- Learning Rate: 10^{-4}

Neural Network. Sampling of Paths

Results. Comparison FCNN vs. RNN

Results. Train vs. Test Sets Accuracy

Train Set

m. s. e.	m. a. e.
0.9419	13.18

m. s. e.	m. a. e.		
1.005	13.24		

Test Set

Results. Windows Width Effect

Window Size Effect:

- Would be desirable to use windows as short as possible
- Evaluation on test set

m. s. e., width = 8	m. s. e, width = 3		
1.832	1.296		

m. a. e., width = 8	m.a.e., width = 3		
126.9	101.4		

Results. Paths Length Effect

Training History Effect :

- Training with paths of 3,5 and 8 points
- Evaluation on 8 points paths database

m. s. e., 8 pts	m. s. e., 5 pts	m. s. e., 3 pts	m. a. e., 8 pts	m. a. e., 5 pts	m. a. e., 3 pts
0.9789	1.108	1.491	89.66	95.32	108.8

Results. Model Validation

Conclusions

- A methodology for training surrogate models for elasto-plastic RVEs is developed.
- The methodology is tested on a micro-scale composite material RVE with matrix plastic behaviour.
- Recurrent neural network outperform conventional fully connected networks even for very short sequences.
- The proposed method is able to reconstruct general-shape strain-stress curves beyond the plastification tresshold with aceptable accuracy.
- The proposed methodology requests of the strain history from very few previous timesteps, which makes it convenient for its use in FE analysis.

Thank you for your attention

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 101007022.